strong>Given Function:
\(x^2 + y^2 - 2y \geq 0 \) & \(x^2 - 2y \leq 0\), \(x \geq y\)
Required Area Calculation:
\[ \text{Required Area} = \frac{1}{2} \times 2 \times 2 - \int_{2}^{2} \frac{x^2}{2} dx - \frac{\pi}{4} - \frac{1}{2} \]
Simplifying:
\[ = \frac{7}{6} - \frac{\pi}{4} \implies n = 5 \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).