strong>Given Function:
\(x^2 + y^2 - 2y \geq 0 \) & \(x^2 - 2y \leq 0\), \(x \geq y\)
Required Area Calculation:
\[ \text{Required Area} = \frac{1}{2} \times 2 \times 2 - \int_{2}^{2} \frac{x^2}{2} dx - \frac{\pi}{4} - \frac{1}{2} \]
Simplifying:
\[ = \frac{7}{6} - \frac{\pi}{4} \implies n = 5 \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32