The area of a parallelogram formed by two vectors \( \vec{a} \) and \( \vec{b} \) is given by the magnitude of the cross product of these vectors: \[ \text{Area of parallelogram} = |\vec{a} \times \vec{b}| \] We are given that the area of the parallelogram with sides \( \vec{a} \) and \( \vec{b} \) is 15 square units, so: \[ |\vec{a} \times \vec{b}| = 15 \] Now, we need to find the area of the parallelogram formed by the vectors \( 3\vec{a} + 2\vec{b} \) and \( \vec{a} + 3\vec{b} \). The area of the new parallelogram is given by the magnitude of the cross product of these two vectors: \[ \text{Area} = |(3\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b})| \] We expand the cross product: \[ (3\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b}) = 3\vec{a} \times \vec{a} + 3\vec{a} \times 3\vec{b} + 2\vec{b} \times \vec{a} + 2\vec{b} \times 3\vec{b} \] Using the property that \( \vec{a} \times \vec{a} = \vec{0} \) and \( \vec{b} \times \vec{b} = \vec{0} \), we get: \[ = 9(\vec{a} \times \vec{b}) + 2(\vec{b} \times \vec{a}) \] Since \( \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \), we get: \[ = 9(\vec{a} \times \vec{b}) - 2(\vec{a} \times \vec{b}) = 7(\vec{a} \times \vec{b}) \] Thus, the magnitude of this cross product is: \[ \text{Area} = |7(\vec{a} \times \vec{b})| = 7|\vec{a} \times \vec{b}| = 7 \times 15 = 105 \]
So, the correct answer is (C) : 105.
Given:
Step 1: Area of a parallelogram formed by vectors \(\vec{u}\) and \(\vec{v}\) is given by:
\[ \text{Area} = |\vec{u} \times \vec{v}| \]
Step 2: Use the formula with new vectors:
\[ \text{Area} = |(3\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b})| \]
Step 3: Apply distributive property of cross product:
\[ = |3\vec{a} \times \vec{a} + 3\vec{a} \times 3\vec{b} + 2\vec{b} \times \vec{a} + 2\vec{b} \times 3\vec{b}| \]
Note:
So:
\[ = |9\vec{a} \times \vec{b} + 2\vec{b} \times \vec{a}| = |9\vec{a} \times \vec{b} - 2\vec{a} \times \vec{b}| = |(9 - 2)\vec{a} \times \vec{b}| = |7\vec{a} \times \vec{b}| = 7 |\vec{a} \times \vec{b}| \]
Step 4: Area = \(7 \times 15 = 105\) sq. units
Final Answer: 105
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: