The area of a parallelogram formed by two vectors \( \vec{a} \) and \( \vec{b} \) is given by the magnitude of the cross product of these vectors: \[ \text{Area of parallelogram} = |\vec{a} \times \vec{b}| \] We are given that the area of the parallelogram with sides \( \vec{a} \) and \( \vec{b} \) is 15 square units, so: \[ |\vec{a} \times \vec{b}| = 15 \] Now, we need to find the area of the parallelogram formed by the vectors \( 3\vec{a} + 2\vec{b} \) and \( \vec{a} + 3\vec{b} \). The area of the new parallelogram is given by the magnitude of the cross product of these two vectors: \[ \text{Area} = |(3\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b})| \] We expand the cross product: \[ (3\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b}) = 3\vec{a} \times \vec{a} + 3\vec{a} \times 3\vec{b} + 2\vec{b} \times \vec{a} + 2\vec{b} \times 3\vec{b} \] Using the property that \( \vec{a} \times \vec{a} = \vec{0} \) and \( \vec{b} \times \vec{b} = \vec{0} \), we get: \[ = 9(\vec{a} \times \vec{b}) + 2(\vec{b} \times \vec{a}) \] Since \( \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \), we get: \[ = 9(\vec{a} \times \vec{b}) - 2(\vec{a} \times \vec{b}) = 7(\vec{a} \times \vec{b}) \] Thus, the magnitude of this cross product is: \[ \text{Area} = |7(\vec{a} \times \vec{b})| = 7|\vec{a} \times \vec{b}| = 7 \times 15 = 105 \]
So, the correct answer is (C) : 105.
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |