Given that, \(a_3 = 4\) and \(a_9 = −8\)
We know that, \(a_n = a + (n − 1) d\)
\(a_3 = a + (3 − 1) d\)
\(4 = a + 2d\) ..…(i)
\(a_9 = a + (9 − 1)\) d
\(−8 = a + 8d \) ……(ii)
On subtracting equation (i) from (ii), we obtain
\(−12 = 6d\)
\(d = −2\)
From equation (i), we obtain
\(4 = a + 2 (−2)\)
\(4 = a − 4\)
\(a = 8\)
Let nth term of this A.P. be zero.
\(a_n = a + (n − 1) d\)
\(0 = 8 + (n − 1) (−2)\)
\(0 = 8 − 2n + 2\)
\(2n = 10\)
\(n = 5\)
Hence, 5th term of this A.P. is 0.
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD. 
प्रादेशिक स्तर पर आयोजित होने वाली 100 मीटर की बाधा दौड़ में आपके मित्र को प्रथम स्थान मिला है। उसे बधाई देते हुए लगभग 40 शब्दों में एक संदेश लिखिए।