Step 1: Use the Addition Formula for Tangents
We are given:
\[
\tan \alpha = \frac{m}{m+1}, \quad \tan \beta = \frac{1}{2m+1}
\]
We can use the addition formula for tangents:
\[
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}
\]
Step 2: Substitute the Values
Substituting the given values:
\[
\tan(\alpha + \beta) = \frac{\frac{m}{m+1} + \frac{1}{2m+1}}{1 - \frac{m}{m+1} \cdot \frac{1}{2m+1}}
\]
Simplify the numerator and denominator:
\[
\tan(\alpha + \beta) = 1
\]
Thus, \( \alpha + \beta = \frac{\pi}{4} \).
Step 3: Conclusion
Thus, \( (\alpha + \beta) = \frac{\pi}{4} \).