For an arithmetic progression,
\[
2x = \tan\!\left(\frac{\pi}{9}\right) + \tan\!\left(\frac{7\pi}{18}\right)
\]
Since
\[
\frac{7\pi}{18} = \frac{\pi}{2} - \frac{\pi}{9},
\quad
\tan\!\left(\frac{7\pi}{18}\right)=\cot\!\left(\frac{\pi}{9}\right)
\]
\[
2x = \tan A + \cot A
= \frac{1}{\sin A \cos A}
= \frac{2}{\sin(2A)}
\]
with $A=\frac{\pi}{9}$,
\[
x = \frac{1}{\sin(\frac{2\pi}{9})}
\]
Now,
\[
2y = \tan\!\left(\frac{\pi}{9}\right) + \tan\!\left(\frac{5\pi}{18}\right)
\]
Using identity:
\[
\tan A + \tan B
= \frac{\sin(A+B)}{\cos A \cos B}
\]
Here,
\[
A+B = \frac{\pi}{9} + \frac{5\pi}{18} = \frac{7\pi}{18}
\]
\[
2y = \frac{\sin(\frac{7\pi}{18})}{\cos(\frac{\pi}{9})\cos(\frac{5\pi}{18})}
\]
Since $\sin(\frac{7\pi}{18})=\cos(\frac{\pi}{9})$,
\[
2y = \frac{1}{\cos(\frac{5\pi}{18})}
= \frac{1}{\sin(\frac{2\pi}{9})}
\]
Thus,
\[
x = 2y
\Rightarrow |x-2y|=0
\]