We are given:
\[
\tan A = \frac{1}{2} \quad \text{and} \quad \tan B = \frac{1}{3}
\]
We need to find \( A + B \).
We will use the formula for the tangent of the sum of two angles:
\[
\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
\]
Substitute the given values for \( \tan A \) and \( \tan B \):
\[
\tan(A + B) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \left( \frac{1}{2} \times \frac{1}{3} \right)}
\]
First, simplify the numerator:
\[
\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}
\]
Now, simplify the denominator:
\[
1 - \left( \frac{1}{2} \times \frac{1}{3} \right) = 1 - \frac{1}{6} = \frac{5}{6}
\]
So,
\[
\tan(A + B) = \frac{\frac{5}{6}}{\frac{5}{6}} = 1
\]
The value of \( \tan(A + B) = 1 \) corresponds to an angle of \( 45^\circ \).
Thus, \( A + B = 45^\circ \).