\[ \tan(A - B) = \frac{1}{\sqrt{3}} \quad \text{and} \quad \sin A = \frac{1}{\sqrt{2}}. \]
Step 1: Determine the value of \( A \).
From \( \sin A = \frac{1}{\sqrt{2}} \), we recognize this as a standard trigonometric value. The angle \( A \) that satisfies this is:
\[ A = 45^\circ \quad (\text{since } \sin 45^\circ = \frac{1}{\sqrt{2}}). \]
Step 2: Use the given \( \tan(A - B) = \frac{1}{\sqrt{3}} \).
Substitute \( A = 45^\circ \):
\[ \tan(45^\circ - B) = \frac{1}{\sqrt{3}}. \]
Recognize that \( \frac{1}{\sqrt{3}} \) is the tangent of \( 30^\circ \):
\[ \tan(45^\circ - B) = \tan 30^\circ. \]
Step 3: Solve for \( B \).
Since \( \tan(45^\circ - B) = \tan 30^\circ \), we equate the angles:
\[ 45^\circ - B = 30^\circ. \]
Solve for \( B \):
\[ B = 45^\circ - 30^\circ = 15^\circ. \]
Final Answer: The value of \( B \) is \( \mathbf{15^\circ} \), which corresponds to option \( \mathbf{(2)} \).
The given graph illustrates: