Given: \( \tan \theta = \sqrt{3} \)
Step 1: Express in terms of sin and cos
\[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \sqrt{3} \]
Step 2: Assign standard values
For \( \tan \theta = \sqrt{3} \), we know: \[ \sin \theta = \frac{\sqrt{3}}{2}, \quad \cos \theta = \frac{1}{2} \]
Step 3: Compute sec θ
\[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{1}{2}} = 2 \]
Final Answer: 2
We know from trigonometric identities that:
Given that \(\tan \theta = \sqrt{3}\), we identify this with the standard angle \(\theta = 60^\circ\) (or \(\frac{\pi}{3}\) radians) because \(\tan 60^\circ = \sqrt{3}\).
At this angle, the trigonometric values are:
Subsequently, using the identity for secant:
\(\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{1}{2}} = 2\)
Thus, the value of \(\sec \theta\) is 2.
The given graph illustrates: