Question:

If 1x2+1y2=a(xy)\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y), prove that dydx=1y21x2\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}.

Show Hint

Apply the chain rule carefully for derivatives of composite functions like 1x2\sqrt{1 - x^2} and 1y2\sqrt{1 - y^2}. Rearrange terms systematically to isolate dydx\frac{dy}{dx}.
Updated On: Jan 18, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The given equation is: 1x2+1y2=a(xy). \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y).  

Differentiate both sides with respect to xx: ddx(1x2)+ddx(1y2)=ddx[a(xy)]. \frac{d}{dx}\left(\sqrt{1 - x^2}\right) + \frac{d}{dx}\left(\sqrt{1 - y^2}\right) = \frac{d}{dx}[a(x - y)]. Using the chain rule: x1x2+y1y2dydx=a(1dydx). \frac{-x}{\sqrt{1 - x^2}} + \frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = a(1 - \frac{dy}{dx}).  

Rearrange the terms: y1y2dydx+adydx=ax1x2. \frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} + a\frac{dy}{dx} = a - \frac{x}{\sqrt{1 - x^2}}.  

Factorize dydx\frac{dy}{dx} on the left-hand side: dydx(ay1y2)=ax1x2. \frac{dy}{dx}\left(a - \frac{y}{\sqrt{1 - y^2}}\right) = a - \frac{x}{\sqrt{1 - x^2}}.  

Solve for dydx\frac{dy}{dx}: dydx=ax1x2ay1y2. \frac{dy}{dx} = \frac{a - \frac{x}{\sqrt{1 - x^2}}}{a - \frac{y}{\sqrt{1 - y^2}}}.  

For the given condition a=1a = 1, this simplifies to: dydx=1y21x2. \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}. Hence, it is proved that: dydx=1y21x2. \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}.

Was this answer helpful?
0
0

Top Questions on Relations and Functions

View More Questions