Step 1: Understanding the Concept:
We need to use the fundamental Pythagorean trigonometric identity that relates the sine and cosine of an angle.
Step 2: Key Formula or Approach:
The Pythagorean identity is:
\[ \sin^2\theta + \cos^2\theta = 1 \]
We can rearrange this to solve for \(\cos\theta\):
\[ \cos^2\theta = 1 - \sin^2\theta \]
\[ \cos\theta = \sqrt{1 - \sin^2\theta} \]
Step 3: Detailed Explanation:
Given:
\[ \sin\theta = \frac{11}{61} \]
Using the identity \( \sin^2\theta + \cos^2\theta = 1 \):
\[ \left(\frac{11}{61}\right)^2 + \cos^2\theta = 1 \]
\[ \frac{11^2}{61^2} + \cos^2\theta = 1 \]
\[ \frac{121}{3721} + \cos^2\theta = 1 \]
Now, solve for \(\cos^2\theta\):
\[ \cos^2\theta = 1 - \frac{121}{3721} \]
\[ \cos^2\theta = \frac{3721 - 121}{3721} \]
\[ \cos^2\theta = \frac{3600}{3721} \]
Take the square root of both sides. Since it is not specified, we assume \(\theta\) is in the first quadrant where cosine is positive.
\[ \cos\theta = \sqrt{\frac{3600}{3721}} \]
\[ \cos\theta = \frac{\sqrt{3600}}{\sqrt{3721}} \]
\[ \cos\theta = \frac{60}{61} \]
Step 4: Final Answer:
The value of \(\cos\theta\) is \( \frac{60}{61} \).
An observer at a distance of 10 m from tree looks at the top of the tree, the angle of elevation is 60\(^\circ\). To find the height of tree complete the activity. (\(\sqrt{3} = 1.73\))
Activity :
In the figure given above, AB = h = height of tree, BC = 10 m, distance of the observer from the tree.
Angle of elevation (\(\theta\)) = \(\angle\)BCA = 60\(^\circ\)
tan \(\theta\) = \(\frac{\boxed{\phantom{AB}}}{BC}\) \(\dots\) (I)
tan 60\(^\circ\) = \(\boxed{\phantom{\sqrt{3}}}\) \(\dots\) (II)
\(\frac{AB}{BC} = \sqrt{3}\) \(\dots\) (From (I) and (II))
AB = BC \(\times\) \(\sqrt{3}\) = 10\(\sqrt{3}\)
AB = 10 \(\times\) 1.73 = \(\boxed{\phantom{17.3}}\)
\(\therefore\) height of the tree is \(\boxed{\phantom{17.3}}\) m.
In the figure given below, find RS and PS using the information given in \(\triangle\)PSR.
If \( \cos^2(10^\circ) \cos(20^\circ) \cos(40^\circ) \cos(50^\circ) \cos(70^\circ) = \alpha + \frac{\sqrt{3}}{16} \cos(10^\circ) \), then \( 3\alpha^{-1} \) is equal to:
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :