We are given the equation:
\[
\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3
\]
The sum of sines reaches its maximum value when each sine term is equal to 1, which occurs when each angle is \( 90^\circ \). Hence, we assume:
\[
\theta_1 = \theta_2 = \theta_3 = 90^\circ
\]
For \( \theta_1 = \theta_2 = \theta_3 = 90^\circ \), we have:
\[
\sin 90^\circ = 1
\]
Thus:
\[
\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 1 + 1 + 1 = 3
\]
Now, for the cosine terms:
\[
\cos 90^\circ = 0
\]
So:
\[
\cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0 + 0 + 0 = 0
\]