We are given the equation:
\[
\sin \left( \sin^{-1} \frac{1}{5} \right) + \cos^{-1} x = 1
\]
Since \( \sin \left( \sin^{-1} \frac{1}{5} \right) = \frac{1}{5} \), the equation becomes:
\[
\frac{1}{5} + \cos^{-1} x = 1
\]
Now solve for \( \cos^{-1} x \):
\[
\cos^{-1} x = 1 - \frac{1}{5} = \frac{4}{5}
\]
Taking the cosine of both sides:
\[
x = \cos \left( \frac{4}{5} \right)
\]
Thus, the correct value of \( x \) is \( \frac{1}{5} \).