\( 1 \)
We are given: \[ \sin h^{-1}(-\sqrt{3}) + \cos h^{-1}(2) = K \] We need to determine \( \cosh K \).
--- Step 1: Express \( \sinh^{-1}(-\sqrt{3}) \) in Terms of Logarithm Using the identity: \[ \sinh^{-1} x = \ln \left( x + \sqrt{x^2 + 1} \right) \] \[ \sinh^{-1}(-\sqrt{3}) = \ln \left( -\sqrt{3} + \sqrt{(\sqrt{3})^2 + 1} \right) \] \[ = \ln \left( -\sqrt{3} + \sqrt{4} \right) \] \[ = \ln \left( -\sqrt{3} + 2 \right) \] Thus, \[ \sinh(\sinh^{-1}(-\sqrt{3})) = -\sqrt{3} \]
Step 2: Compute \( \cosh^{-1}(2) \) Using the identity: \[ \cosh^{-1} x = \ln \left( x + \sqrt{x^2 - 1} \right) \] \[ \cosh^{-1}(2) = \ln \left( 2 + \sqrt{4 - 1} \right) \] \[ = \ln \left( 2 + \sqrt{3} \right) \] Thus, \[ \cosh(\cosh^{-1}(2)) = 2 \]
Step 3: Compute \( K \) \[ K = \sinh^{-1}(-\sqrt{3}) + \cosh^{-1}(2) \] \[ K = \ln (2 - \sqrt{3}) + \ln (2 + \sqrt{3}) \] Using the logarithm property: \[ \ln a + \ln b = \ln (a \cdot b) \] \[ K = \ln \left( (2 - \sqrt{3})(2 + \sqrt{3}) \right) \] \[ = \ln \left( 4 - 3 \right) = \ln (1) = 0 \]
Step 4: Compute \( \cosh K \) \[ \cosh K = \cosh(0) = 1 \]
--- Final Answer: \(\boxed{1}\)
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).