Given: sinA=54
First, we'll find cosA using the Pythagorean identity:
sin2A+cos2A=1(54)2+cos2A=12516+cos2A=1cos2A=1−2516=259cosA=53(We take the positive value)
Next, we find tanA:
tanA=cosAsinA=5354=34
Now, we'll evaluate the expression (3−tanA)(2+cosA):
(3−tanA)(2+cosA)=(3−34)(2+53)=(39−34)(510+53)=(35)(513)=3×55×13=313
The correct answer is option (2) 313.