Question:

If sinA=45\sin A = \frac{4}{5}, then (3tanA)(2+cosA)(3 − \tan A)(2 + \cos A) is:

Updated On: Apr 2, 2025
  • 125\frac{12}{5}
  • 133\frac{13}{3}
  • 135\frac{13}{5}
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

Given: sinA=45\sin A = \frac{4}{5}

First, we'll find cosA\cos A using the Pythagorean identity:

sin2A+cos2A=1(45)2+cos2A=11625+cos2A=1cos2A=11625=925cosA=35(We take the positive value) \sin^2 A + \cos^2 A = 1 \\ \left(\frac{4}{5}\right)^2 + \cos^2 A = 1 \\ \frac{16}{25} + \cos^2 A = 1 \\ \cos^2 A = 1 - \frac{16}{25} = \frac{9}{25} \\ \cos A = \frac{3}{5} \quad (\text{We take the positive value})

Next, we find tanA\tan A:

tanA=sinAcosA=4535=43 \tan A = \frac{\sin A}{\cos A} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}

Now, we'll evaluate the expression (3tanA)(2+cosA)(3 - \tan A)(2 + \cos A):

(3tanA)(2+cosA)=(343)(2+35)=(9343)(105+35)=(53)(135)=5×133×5=133 (3 - \tan A)(2 + \cos A) = \left(3 - \frac{4}{3}\right)\left(2 + \frac{3}{5}\right) \\ = \left(\frac{9}{3} - \frac{4}{3}\right)\left(\frac{10}{5} + \frac{3}{5}\right) \\ = \left(\frac{5}{3}\right)\left(\frac{13}{5}\right) \\ = \frac{5 \times 13}{3 \times 5} = \frac{13}{3}

The correct answer is option (2) 133\frac{13}{3}.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Using sinA=45\sin A = \frac{4}{5}

we calculate tanA=43\tan A = \frac{4}{3} and cosA=35\cos A = \frac{3}{5}

Substituting into the expression gives (343)(2+35)=(53)×(135)=133\left(3 − \frac{4}{3}\right)\left(2 + \frac{3}{5}\right) = \left(\frac{5}{3}\right) \times \left(\frac{13}{5}\right) = \frac{13}{3}.

Was this answer helpful?
1
0

Top Questions on Trigonometry

View More Questions