Question:

If $\sin A = \frac{4}{5}$, then $(3 − \tan A)(2 + \cos A)$ is:

Updated On: May 31, 2025
  • $\frac{12}{5}$
  • $\frac{13}{3}$
  • $\frac{13}{5}$
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

Given: \(\sin A = \frac{4}{5}\) 

First, we'll find \(\cos A\) using the Pythagorean identity:

\[ \sin^2 A + \cos^2 A = 1 \\ \left(\frac{4}{5}\right)^2 + \cos^2 A = 1 \\ \frac{16}{25} + \cos^2 A = 1 \\ \cos^2 A = 1 - \frac{16}{25} = \frac{9}{25} \\ \cos A = \frac{3}{5} \quad (\text{We take the positive value}) \]

Next, we find \(\tan A\):

\[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \]

Now, we'll evaluate the expression \((3 - \tan A)(2 + \cos A)\):

\[ (3 - \tan A)(2 + \cos A) = \left(3 - \frac{4}{3}\right)\left(2 + \frac{3}{5}\right) \\ = \left(\frac{9}{3} - \frac{4}{3}\right)\left(\frac{10}{5} + \frac{3}{5}\right) \\ = \left(\frac{5}{3}\right)\left(\frac{13}{5}\right) \\ = \frac{5 \times 13}{3 \times 5} = \frac{13}{3} \]

The correct answer is option (2) \(\frac{13}{3}\).

Was this answer helpful?
4
2
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Using $\sin A = \frac{4}{5}$, 

we calculate $\tan A = \frac{4}{3}$ and $\cos A = \frac{3}{5}$. 

Substituting into the expression gives $\left(3 − \frac{4}{3}\right)\left(2 + \frac{3}{5}\right) = \left(\frac{5}{3}\right) \times \left(\frac{13}{5}\right) = \frac{13}{3}$.

Was this answer helpful?
1
0