Step 1: Determine the dimensional formula of Stefan-Boltzmann constant (\(\sigma\)).
Stefan-Boltzmann law states that the total energy radiated per unit surface area of a black body per unit time is directly proportional to the fourth power of the black body's absolute temperature (T).
So, \( \frac{\text{P}}{\text{A}} = \sigma\text{T\textsuperscript{4}} \)
Where:
P = Power (Energy/Time) = [ML\textsuperscript{2}T\textsuperscript{-3}]
A = Area = [L\textsuperscript{2}]
T = Temperature = [K]
\(\sigma\) = Stefan-Boltzmann constant
Therefore, \( \sigma = \frac{\text{P}}{\text{AT\textsuperscript{4}}} = \frac{\text{[ML\textsuperscript{2}T\textsuperscript{-3}]}}{\text{[L\textsuperscript{2}][K\textsuperscript{4}]}} = \text{[ML\textsuperscript{0}T\textsuperscript{-3}K\textsuperscript{-4}]} \)
Step 2: Determine the dimensional formula of Heat Capacity (S).
Heat capacity (S) is the amount of heat energy required to raise the temperature of a substance by one degree Celsius (or Kelvin).
\( \text{S} = \frac{\text{Q}}{\Delta\text{T}} \)
Where:
Q = Heat Energy = [ML\textsuperscript{2}T\textsuperscript{-2}]
\(\Delta\)T = Change in Temperature = [K]
Therefore, \( \text{S} = \frac{\text{[ML\textsuperscript{2}T\textsuperscript{-2}]}}{\text{[K]}} = \text{[ML\textsuperscript{2}T\textsuperscript{-2}K\textsuperscript{-1}]} \)
Step 3: Calculate the dimensional formula of \(\frac{\text{S}}{\sigma}\).
\[
\frac{\text{S}}{\sigma} = \frac{\text{[ML\textsuperscript{2}T\textsuperscript{-2}K\textsuperscript{-1}]}}{\text{[MT\textsuperscript{-3}K\textsuperscript{-4}]}}
\]
Now, simplify the powers of M, L, T, and K:
For M: M\textsuperscript{1-1} = M\textsuperscript{0}
For L: L\textsuperscript{2-0} = L\textsuperscript{2}
For T: T\textsuperscript{-2 - (-3)} = T\textsuperscript{-2 + 3} = T\textsuperscript{1}
For K: K\textsuperscript{-1 - (-4)} = K\textsuperscript{-1 + 4} = K\textsuperscript{3}
So, the dimensional formula of \(\frac{\text{S}}{\sigma}\) is [M\textsuperscript{0}L\textsuperscript{2}TK\textsuperscript{3}].
Step 4: Select the correct option.
The calculated dimensional formula [M\textsuperscript{0}L\textsuperscript{2}TK\textsuperscript{3}] matches option (2).