We are given that \( \sec(\alpha + \beta) = \frac{\sqrt{7}}{\sqrt{3}} \), and we are asked to find \( \sin(\alpha + \beta) + \tan(\alpha + \beta) \).
Step 1: From the given, \( \sec(\alpha + \beta) = \frac{1}{\cos(\alpha + \beta)} \), so we can write: \[ \cos(\alpha + \beta) = \frac{\sqrt{3}}{\sqrt{7}}. \] Step 2: Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \sin(\alpha + \beta) \): \[ \sin^2(\alpha + \beta) = 1 - \cos^2(\alpha + \beta) = 1 - \left( \frac{\sqrt{3}}{\sqrt{7}} \right)^2 = 1 - \frac{3}{7} = \frac{4}{7}. \] Thus, \[ \sin(\alpha + \beta) = \frac{2}{\sqrt{7}}. \] Step 3: Now, we can calculate \( \tan(\alpha + \beta) \) using the identity \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \): \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\frac{2}{\sqrt{7}}}{\frac{\sqrt{3}}{\sqrt{7}}} = \frac{2}{\sqrt{3}}. \] Step 4: Finally, we calculate the sum \( \sin(\alpha + \beta) + \tan(\alpha + \beta) \): \[ \sin(\alpha + \beta) + \tan(\alpha + \beta) = \frac{2}{\sqrt{7}} + \frac{2}{\sqrt{3}}. \] To combine these, we need a common denominator: \[ \frac{2}{\sqrt{7}} + \frac{2}{\sqrt{3}} = \frac{2\sqrt{3} + 2\sqrt{7}}{\sqrt{21}} = \frac{2(\sqrt{3} + \sqrt{7})}{\sqrt{21}}. \] Thus, the correct answer is option (C).
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = x \sin(x^4) \). Then \( f'(x) \) at \( x = \sqrt[4]{\pi} \) is equal to:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: