Step 1: Use the Relationship Between Secant and Cosecant.
Recall that:
\[
\sec \theta = \csc(90^\circ - \theta)
\]
Thus, the given equation:
\[
\sec(7^\circ - 2\alpha) = \csc(5\alpha - 7^\circ)
\]
can be rewritten using the relationship above:
\[
\csc(90^\circ - (7^\circ - 2\alpha)) = \csc(5\alpha - 7^\circ)
\]
Step 2: Simplify the Argument of the Cosecant Function.
Simplify \( 90^\circ - (7^\circ - 2\alpha) \):
\[
90^\circ - (7^\circ - 2\alpha) = 90^\circ - 7^\circ + 2\alpha = 83^\circ + 2\alpha
\]
Thus, the equation becomes:
\[
\csc(83^\circ + 2\alpha) = \csc(5\alpha - 7^\circ)
\]
Step 3: Equate the Arguments.
For the cosecant functions to be equal, their arguments must differ by integer multiples of \( 360^\circ \), or be directly equal. We assume:
\[
83^\circ + 2\alpha = 5\alpha - 7^\circ
\]
Step 4: Solve for \( \alpha \).
Rearranging the equation:
Start with the equation:
\[
83^\circ + 2\alpha = 5\alpha - 7^\circ
\]
Move all terms to one side:
\[
83^\circ + 2\alpha - 5\alpha + 7^\circ = 0
\]
Combine like terms:
\[
(83^\circ + 7^\circ) - 3\alpha = 0
\]
\[
90^\circ = 3\alpha
\]
Now solve for \( \alpha \):
\[
\alpha = \frac{90^\circ}{3} = 30^\circ
\]
Step 5: Analyze the Options.
Option (1): \( 60^\circ \) — Incorrect
Option (2): \( 50^\circ \) — Incorrect
Option (3): \( 40^\circ \) — Incorrect
Option (4): \( 30^\circ \) — Correct
Step 6: Final Answer.
\[
(4) \quad \mathbf{30^\circ}
\]