We are given the relation: \[ R = \{(x, y) : x, y \in \mathbb{Z}, x^2 + 3y^2 \leq 7 \}. \] This is a set of pairs of integers \( (x, y) \) where \( x^2 + 3y^2 \leq 7 \).
Step 1: We will find the possible values for \( y \) for different integer values of \( x \).
- For \( x = 0 \): \[ 0^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq 7 \quad \Rightarrow \quad y^2 \leq \frac{7}{3} \approx 2.33. \] Therefore, \( y^2 \leq 2 \), so \( y \in \{-1, 0, 1\} \).
- For \( x = \pm 1 \): \[ 1^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 1 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq 6 \quad \Rightarrow \quad y^2 \leq 2. \] Therefore, \( y \in \{-1, 0, 1\} \).
- For \( x = \pm 2 \): \[ 2^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 4 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq 3 \quad \Rightarrow \quad y^2 \leq 1. \] Therefore, \( y \in \{-1, 0, 1\} \). - For \( x = \pm 3 \): \[ 3^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 9 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq -2. \] This results in no valid solutions for \( y \).
Step 2: From the above analysis, we see that the possible values for \( y \) are \( \{-1, 0, 1\} \).
Therefore, the range of the relation \( R \), which consists of the set of all possible values of \( y \), is: \[ \{0, -1, 1\}. \]
Thus, the correct answer is option (E).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: