We are given the relation: \[ R = \{(x, y) : x, y \in \mathbb{Z}, x^2 + 3y^2 \leq 7 \}. \] This is a set of pairs of integers \( (x, y) \) where \( x^2 + 3y^2 \leq 7 \).
Step 1: We will find the possible values for \( y \) for different integer values of \( x \).
- For \( x = 0 \): \[ 0^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq 7 \quad \Rightarrow \quad y^2 \leq \frac{7}{3} \approx 2.33. \] Therefore, \( y^2 \leq 2 \), so \( y \in \{-1, 0, 1\} \).
- For \( x = \pm 1 \): \[ 1^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 1 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq 6 \quad \Rightarrow \quad y^2 \leq 2. \] Therefore, \( y \in \{-1, 0, 1\} \).
- For \( x = \pm 2 \): \[ 2^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 4 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq 3 \quad \Rightarrow \quad y^2 \leq 1. \] Therefore, \( y \in \{-1, 0, 1\} \). - For \( x = \pm 3 \): \[ 3^2 + 3y^2 \leq 7 \quad \Rightarrow \quad 9 + 3y^2 \leq 7 \quad \Rightarrow \quad 3y^2 \leq -2. \] This results in no valid solutions for \( y \).
Step 2: From the above analysis, we see that the possible values for \( y \) are \( \{-1, 0, 1\} \).
Therefore, the range of the relation \( R \), which consists of the set of all possible values of \( y \), is: \[ \{0, -1, 1\}. \]
Thus, the correct answer is option (E).
The focus of the parabola \(y^2 + 4y - 8x + 20 = 0\) is at the point:
Let \( S \) denote the set of all subsets of integers containing more than two numbers. A relation \( R \) on \( S \) is defined by:
\[ R = \{ (A, B) : \text{the sets } A \text{ and } B \text{ have at least two numbers in common} \}. \]
Then the relation \( R \) is:
The centre of the hyperbola \(16x^2 - 4y^2 + 64x - 24y - 36 = 0\) is at the point: