If pqr = 1 then
\((\)\((\frac{1}{1 + p + q^-1})\) \(+\) \((\frac{1}{1 + q + r^-1})\) \(+\) \((\frac{1}{1 + r + p^-1})\)\()\) is equal to
In the question it is given that \(pqr\) = 1
The equation given is \(((\frac{1}{1 + p + q^-1})\) + \((\frac{1}{1 + q + r^-1})\) + \((\frac{1}{1 + r + p^-1}))\)
= \(\frac{1}{1+ q + \frac{1}{q}} + \frac{1}{1+ q + \frac{1}{r}} + \frac{1}{1+ q + \frac{1}{p}}\)
= \(\frac{q}{1+ q + pq} + \frac{1}{1+ q + pq} + \frac{q}{1+ \frac{1}{pq} + \frac{1}{p}}\)
= \(\frac{q}{1+ q + pq} + \frac{1}{1+ q + pq} + \frac{pq}{1+ q + pq}\)
\(\frac{1 + q + pq}{1+ q + pq} = 1\)
The correct option is (A): 1
List I | List II | ||
A. | \(\sqrt{\frac{0.81\times0.484}{0.064\times6.25}}\) | I. | 0.024 |
B. | \(\sqrt{\frac{0.204\times42}{0.07\times3.4}}\) | II. | 0.99 |
C. | \(\sqrt{\frac{0.081\times0.324\times4.624}{1.5625\times0.0289\times72.9\times64}}\) | III. | 50 |
D. | \(\sqrt{\frac{9.5\times0.085}{0.0017\times0.19}}\) | IV. | 6 |