Step 1: Parametrize the given circle.
Since $P(h,k)$ lies on $x^2 + y^2 = 4$, let
\[
P = (2\cos\theta,\,2\sin\theta)
\]
Step 2: Find coordinates of point $Q$.
\[
Q = (2h+1,\,3k+3)
\]
Substituting values of $h$ and $k$,
\[
Q = (4\cos\theta + 1,\,6\sin\theta + 3)
\]
Step 3: Write the locus of $Q$.
\[
\frac{(x-1)^2}{16} + \frac{(y-3)^2}{36} = 1
\]
This is the equation of an ellipse.
Step 4: Identify $a^2$ and $b^2$.
\[
a^2 = 36,\quad b^2 = 16
\]
Step 5: Find eccentricity.
\[
e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{16}{36} = \frac{5}{9}
\]
Step 6: Final calculation.
\[
\frac{5}{e^2} = \frac{5}{\frac{5}{9}} = 9
\]
Final conclusion.
The required value is 9.