We are given the following information:
1. \( P(B) = \frac{3}{5} \)
2. \( P(A/B) = \frac{1}{2} \)
3. \( P(A \cup B) = \frac{4}{5} \)
We need to find \( P(A \cup B)' + P(A') \).
Step 1: Use the complement rule
The complement rule states that:
\[
P(A \cup B)' = 1 - P(A \cup B)
\]
Substituting the given value of \( P(A \cup B) \):
\[
P(A \cup B)' = 1 - \frac{4}{5} = \frac{1}{5}
\]
Step 2: Use the formula for \( P(A') \)
The probability of the complement of \( A \) is:
\[
P(A') = 1 - P(A)
\]
We can use the formula \( P(A/B) = \frac{P(A \cap B)}{P(B)} \) to find \( P(A) \). From the given, we have:
\[
P(A/B) = \frac{1}{2} \quad \text{and} \quad P(B) = \frac{3}{5}
\]
Thus:
\[
P(A \cap B) = P(A/B) \times P(B) = \frac{1}{2} \times \frac{3}{5} = \frac{3}{10}
\]
Now, using the inclusion-exclusion formula:
\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]
Substitute the known values:
\[
\frac{4}{5} = P(A) + \frac{3}{5} - \frac{3}{10}
\]
Solving for \( P(A) \):
\[
\frac{4}{5} = P(A) + \frac{6}{10} - \frac{3}{10}
\]
\[
\frac{4}{5} = P(A) + \frac{3}{10}
\]
\[
P(A) = \frac{4}{5} - \frac{3}{10} = \frac{8}{10} - \frac{3}{10} = \frac{5}{10} = \frac{1}{2}
\]
Thus:
\[
P(A') = 1 - \frac{1}{2} = \frac{1}{2}
\]
Step 3: Final Calculation
Now we can calculate \( P(A \cup B)' + P(A') \):
\[
P(A \cup B)' + P(A') = \frac{1}{5} + \frac{1}{2}
\]
Finding a common denominator:
\[
P(A \cup B)' + P(A') = \frac{2}{10} + \frac{5}{10} = \frac{7}{10}
\]
Therefore, the correct value is \( 1 \).
Thus, the answer is \( \boxed{1} \).