Given:
\begin{itemize}
\item \( P(A \cap B) = \frac{2}{25} \)
\item \( P(A \cup B) = \frac{8}{25} \)
\end{itemize}
Step 1: Use the formula for the union of two events
We know the formula:
\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]
Substitute the given values:
\[
\frac{8}{25} = P(A) + P(B) - \frac{2}{25}
\]
Step 2: Solve for \( P(A) + P(B) \)
Add \( \frac{2}{25} \) to both sides:
\[
P(A) + P(B) = \frac{8}{25} + \frac{2}{25} = \frac{10}{25} = \frac{2}{5}
\]
Step 3: Analyze the possible values of \( P(A) \)
Using the formula and the given options, we see that the value of \( P(A) \) that satisfies the condition is \( \frac{4}{15} \).
Answer: The correct answer is option (1): \( \frac{4}{15} \).