If \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \) are the position vectors of the points A, B, C respectively and \( 5\overrightarrow{a} + 3\overrightarrow{b} - 8\overrightarrow{c} = 0 \), then find the ratio in which the point C divides the line segment AB.
Show Hint
The point dividing the line segment in the ratio \( m:n \) has the position vector \( \frac{n\overrightarrow{a} + m\overrightarrow{b}}{m+n} \).
We are given the vector equation:
\[
5\overrightarrow{a} + 3\overrightarrow{b} - 8\overrightarrow{c} = 0
\]
Rearranging the equation:
\[
5\overrightarrow{a} + 3\overrightarrow{b} = 8\overrightarrow{c}
\]
This can be interpreted as the vector form of the point \( C \) dividing the line segment joining \( A \) and \( B \). The formula for the position vector of the point dividing a line segment in the ratio \( m:n \) is:
\[
\overrightarrow{c} = \frac{n\overrightarrow{a} + m\overrightarrow{b}}{m+n}
\]
Comparing this with our equation, we get:
\[
5\overrightarrow{a} + 3\overrightarrow{b} = 8\overrightarrow{c}
\]
Thus, the ratio in which \( C \) divides \( AB \) is \( 5:3 \).
So, the ratio is:
\[
\boxed{5:3}
\]