The cross product of two vectors \( \mathbf{r} \) and \( \mathbf{F} \) is given by the formula:
\[
\mathbf{r} \times \mathbf{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}
\]
Given:
\[
\mathbf{r} = (-5\hat{i} - 3\hat{j}) \, \text{m}, \quad \mathbf{F} = (4\hat{i} - 10\hat{j}) \, \text{N}
\]
Substitute into the determinant formula:
\[
\mathbf{r} \times \mathbf{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -5 & -3 & 0 \\ 4 & -10 & 0 \end{vmatrix}
\]
Calculating the determinant:
\[
= \hat{i} \begin{vmatrix} -3 & 0 \\ -10 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} -5 & 0 \\ 4 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} -5 & -3 \\ 4 & -10 \end{vmatrix}
\]
\[
= \hat{i} (0 - 0) - \hat{j} (0 - 0) + \hat{k} \left[(-5)(-10) - (4)(-3)\right]
\]
\[
= 0 \hat{i} - 0 \hat{j} + \hat{k} (50 + 12) = 62 \hat{k} \, \text{Nm}
\]
Thus, the correct answer is \( \mathbf{62 \, \text{kNm}} \), and the correct option is (2).