Question:

If \( |\mathbf{\bar{f}}| = 10\), \( |\mathbf{\bar{g}}| = 14\) and \( |\mathbf{\bar{f}} - \mathbf{\bar{g}}| = 15\), then \( |\mathbf{\bar{f}} + \mathbf{\bar{g}}| =\)

Show Hint

In problems involving vector sums and differences, knowing the magnitude of each and the magnitude of their difference allows you to utilize the properties of dot products to find the magnitude of their sum.
Updated On: Mar 22, 2025
  • \( 367 \)
  • \( \sqrt{367} \)
  • \( 400 \)
  • \( 20 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Use the vector magnitude properties for sum and difference: \[ |\mathbf{\bar{f}} + \mathbf{\bar{g}}|^2 = |\mathbf{\bar{f}}|^2 + |\mathbf{\bar{g}}|^2 + 2 \mathbf{\bar{f}} \cdot \mathbf{\bar{g}}, \] \[ |\mathbf{\bar{f}} - \mathbf{\bar{g}}|^2 = |\mathbf{\bar{f}}|^2 + |\mathbf{\bar{g}}|^2 - 2 \mathbf{\bar{f}} \cdot \mathbf{\bar{g}}. \] Step 2: Given \( |\mathbf{\bar{f}} - \mathbf{\bar{g}}| = 15 \), substitute and find \( \mathbf{\bar{f}} \cdot \mathbf{\bar{g}} \): \[ 225 = 100 + 196 - 2 \mathbf{\bar{f}} \cdot \mathbf{\bar{g}} \Rightarrow \mathbf{\bar{f}} \cdot \mathbf{\bar{g}} = 35.5. \] Step 3: Calculate \( |\mathbf{\bar{f}} + \mathbf{\bar{g}}|^2 \): \[ |\mathbf{\bar{f}} + \mathbf{\bar{g}}|^2 = 100 + 196 + 71 = 367. \] Step 4: Thus, \[ |\mathbf{\bar{f}} + \mathbf{\bar{g}}| = \sqrt{367}. \]
Was this answer helpful?
0
0

Top Questions on General and Particular Solutions of a Differential Equation

View More Questions