Step 1: Cosine of the Angle Between Two Vectors
The cosine of the angle \( \theta \) between two vectors \( \vec{A} \) and \( \vec{C} = \vec{A} + \vec{B} \) is given by:
\[
\cos \theta = \frac{\vec{A} \cdot \vec{C}}{|\vec{A}| |\vec{C}|}
\]
where \( \vec{A} \cdot \vec{C} \) is the dot product of the vectors and \( |\vec{A}| \) and \( |\vec{C}| \) are the magnitudes of the vectors.
Step 2: Calculate the Dot Product \( \vec{A} \cdot \vec{C} \)
First, calculate \( \vec{C} = \vec{A} + \vec{B} = (4\hat{i} + 3\hat{j}) + (3\hat{i} + 4\hat{j}) = 7\hat{i} + 7\hat{j} \).
The dot product \( \vec{A} \cdot \vec{C} \) is:
\[
\vec{A} \cdot \vec{C} = (4\hat{i} + 3\hat{j}) \cdot (7\hat{i} + 7\hat{j}) = 4 \cdot 7 + 3 \cdot 7 = 28 + 21 = 49
\]
Step 3: Calculate the Magnitudes of \( \vec{A} \) and \( \vec{C} \)
The magnitude of \( \vec{A} \) is:
\[
|\vec{A}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5
\]
The magnitude of \( \vec{C} \) is:
\[
|\vec{C}| = \sqrt{7^2 + 7^2} = \sqrt{49 + 49} = \sqrt{98} = 7\sqrt{2}
\]
Step 4: Calculate the Cosine of the Angle
Now, substitute the values into the cosine formula:
\[
\cos \theta = \frac{49}{5 \times 7\sqrt{2}} = \frac{49}{35\sqrt{2}} = \frac{7}{5\sqrt{2}}
\]
Final Answer: The cosine of the angle between \( \vec{A} \) and \( \vec{A} + \vec{B} \) is \( \frac{7}{5\sqrt{2}} \).