Given: \[ (\sqrt{2})^{19} \cdot 3^4 \cdot 4^2 \cdot 9^m \cdot 8^n = 3^n \cdot 16^m \cdot \sqrt[4]{64} \]
Substitute back into the equation: \[ 2^{19/2} \cdot 2^4 \cdot 2^{3n} \cdot 3^4 \cdot 3^{2m} = 2^{4m} \cdot 2^{3/2} \cdot 3^n \]
Left side: \[ 2^{19/2 + 4 + 3n} \cdot 3^{4 + 2m} \] Right side: \[ 2^{4m + 3/2} \cdot 3^n \]
From base 3: \[ n = 4 + 2m \quad \text{(i)} \] Substitute into base 2 equation: \[ \frac{19}{2} + 4 + 3(4 + 2m) = 4m + \frac{3}{2} \] \[ \frac{27}{2} + 12 + 6m = 4m + \frac{3}{2} \] \[ \frac{51}{2} + 6m = 4m + \frac{3}{2} \] Multiply both sides by 2: \[ 51 + 12m = 8m + 3 \Rightarrow 4m = -48 \Rightarrow m = -12 \]
\[ \boxed{m = -12} \]