\((\sqrt{2})^{19}3^44^29^m8^n=3^n16^m(\sqrt[4]{64})\)
\(⇒2^{\frac{19}{2}}\times3^4\times2^4\times3^{2m}\times2^{3n}=3^n\times2^{4m}\times2^{\frac{2}{3}}\)
\(⇒2^{(\frac{19}{2}+4+3n)}\times3^{(4+2m)}=2^{(4m+2)}\times3^n\)
By comparing the exponents of identical bases, we obtain
\(\frac{19}{2}+4+3n=4m+\frac{3}{2}.....(1)\)
\(4+2m=n.....(2)\)
Replace the value of n from equation (2) into equation (1) and, upon solving for m, we obtain m = -12.