The correct option is (A): loga(logb a)
To explain why the correct option is \( \log_a(\log_b a) \):
### Given:
We have that \( \log_x a, a^{x/2}, \log_b x \) are in geometric progression (GP). By the property of GP, we can express it as:
\[(a^{x/2})^2 = \log_x a \cdot \log_b x\]
### Step 1: Using Logarithmic Identities
Using the change of base formula:
\( \log_x a = \frac{\log a}{\log x} \)
\( \log_b x = \frac{\log x}{\log b} \)
Substituting these into the GP condition gives:
\[(a^{x/2})^2 = \frac{\log a}{\log x} \cdot \frac{\log x}{\log b}\]
Simplifying further, we have:
\[(a^{x}) = \frac{\log a}{\log b}\]
\[(a^{x})=\log_ba\]
\[x=\log_a(\log_ba)\]