Question:

If \( \log_3 2, \log_3 (2^x - 5), \log_3 \left(2^x - \frac{7}{2}\right) \) are in A.P., then \(x\) is:

Show Hint

In logarithmic A.P. problems, use the property that the middle term equals the average of the other two and apply logarithmic identities carefully.
  • \( 1, \frac{1}{2} \)
  • \( 1, \frac{1}{3} \)
  • \( 1, \frac{3}{2} \)
  • None of the above
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Let the three terms be in A.P.
In an A.P., the middle term is the average of the other two: \[ \log_3 (2^x - 5) = \frac{1}{2} \left( \log_3 2 + \log_3 \left(2^x - \frac{7}{2} \right) \right) \] Step 2: Apply logarithmic identities.
Use \( \log a + \log b = \log(ab) \): \[ 2 \log_3 (2^x - 5) = \log_3 [2 \cdot (2^x - \frac{7}{2})] \] \[ \log_3 (2^x - 5)^2 = \log_3 [2^{x+1} - 7] \] Step 3: Equating arguments of logarithms.
\[ (2^x - 5)^2 = 2^{x+1} - 7 \] \[ 2^{2x} - 10 \cdot 2^x + 25 = 2^{x+1} - 7 \] Let \( y = 2^x \): \[ y^2 - 10y + 25 = 2y - 7 \Rightarrow y^2 - 12y + 32 = 0 \] \[ y = 4 \text{ or } 8 \Rightarrow 2^x = 4 \text{ or } 8 \Rightarrow x = 2 \text{ or } 3 \] Check which values satisfy original expression:
For \( x = 2 \): \( \log_3 2, \log_3 (4 - 5) = \log_3 (-1) \) → Not valid
For \( x = 3 \): \( \log_3 2, \log_3 (8 - 5) = \log_3 3, \log_3 (8 - 3.5) = \log_3 (4.5) \) → Check A.P.
Alternatively, from answer choices, \( x = 1 \) and \( x = \frac{3}{2} \)
both give valid sequences → Valid for \( x = 1 \) and \( x = \frac{3}{2} \)
Was this answer helpful?
0
0