We are given the equation:
\[
\log_{10}x - \log_{10}y = 2 \log_{10}x
\]
Step 1: Simplify the equation:
\[
\log_{10}x - \log_{10}y = 2 \log_{10}x \Rightarrow \log_{10}x - 2 \log_{10}x = \log_{10}y \Rightarrow -\log_{10}x = \log_{10}y
\]
Step 2: Since \( -\log_{10}x = \log_{10}y \), we have:
\[
\log_{10} \frac{1}{x} = \log_{10}y
\]
Step 3: Therefore:
\[
\frac{1}{x} = y
\]
Step 4: Now, substitute \( y = \frac{1}{x} \) into the equation to find possible values for \( x \). Solving, we get the possible value \( x = \frac{1}{100} \).
Thus, the answer is: b. \( \frac{1}{100} \).