We are given the integral:
\[
I = \int_0^{\sqrt{2}} \left\lfloor x^2 \right\rfloor \, dx
\]
where \( \left\lfloor x^2 \right\rfloor \) represents the greatest integer less than or equal to \( x^2 \).
Step 1: Analyze the function \( \left\lfloor x^2 \right\rfloor \) for \( x \in [0, \sqrt{2}] \):
- For \( x \in [0, 1) \), \( x^2 \in [0, 1) \), so \( \left\lfloor x^2 \right\rfloor = 0 \).
- For \( x \in [1, \sqrt{2}) \), \( x^2 \in [1, 2) \), so \( \left\lfloor x^2 \right\rfloor = 1 \).
- At \( x = \sqrt{2} \), \( x^2 = 2 \), and \( \left\lfloor 2 \right\rfloor = 2 \), but the integral does not consider this single point.
Step 2: Break the integral into two parts:
\[
I = \int_0^1 0 \, dx + \int_1^{\sqrt{2}} 1 \, dx
\]
Step 3: Evaluate the integrals:
\[
I = 0 + \int_1^{\sqrt{2}} 1 \, dx = \left[ x \right]_1^{\sqrt{2}} = \sqrt{2} - 1
\]
Thus, the value of the integral is \( \sqrt{2} - 1 \).
Thus, the correct answer is option (C).