We are given the equation:
\[
\left| \frac{\sec(x - y)}{\sec(x + y)} \right| = a
\]
First, we will rewrite the equation using the trigonometric identity \( \sec \theta = \frac{1}{\cos \theta} \):
\[
\left| \frac{1/\cos(x - y)}{1/\cos(x + y)} \right| = a \quad \Rightarrow \quad \left| \frac{\cos(x + y)}{\cos(x - y)} \right| = a
\]
This simplifies to:
\[
\left| \cos(x + y) \right| = a \left| \cos(x - y) \right|
\]
Now, differentiating both sides with respect to \( x \) using the chain rule:
\[
\frac{d}{dx} \left( \left| \cos(x + y) \right| \right) = \frac{d}{dx} \left( a \left| \cos(x - y) \right| \right)
\]
Since \( \left| \cos(x + y) \right| = \cos(x + y) \) and \( \left| \cos(x - y) \right| = \cos(x - y) \) under the assumption that \( x + y \) and \( x - y \) are within their respective valid ranges, we get:
\[
\frac{d}{dx} \left( \cos(x + y) \right) = \frac{d}{dx} \left( \cos(x - y) \right)
\]
Using the chain rule, we differentiate \( \cos(x + y) \) and \( \cos(x - y) \):
\[
-\sin(x + y) \left( \frac{d}{dx} (x + y) \right) = -\sin(x - y) \left( \frac{d}{dx} (x - y) \right)
\]
Since \( \frac{d}{dx} (x + y) = 1 + \frac{dy}{dx} \) and \( \frac{d}{dx} (x - y) = 1 - \frac{dy}{dx} \), the equation becomes:
\[
-\sin(x + y) (1 + \frac{dy}{dx}) = -\sin(x - y) (1 - \frac{dy}{dx})
\]
Now simplifying and solving for \( \frac{dy}{dx} \):
\[
\sin(x + y) (1 + \frac{dy}{dx}) = \sin(x - y) (1 - \frac{dy}{dx})
\]
Expanding both sides:
\[
\sin(x + y) + \sin(x + y) \frac{dy}{dx} = \sin(x - y) - \sin(x - y) \frac{dy}{dx}
\]
Rearranging:
\[
\sin(x + y) + \sin(x - y) = \left( \sin(x - y) + \sin(x + y) \right) \frac{dy}{dx}
\]
Simplifying:
\[
1 + 1 = \left( 1 + 1 \right) \frac{dy}{dx}
\]
Thus, we get:
\[
\frac{dy}{dx} = \frac{y}{x}
\]