Step 1: Use Reduction Formula for Integration
Given:
\[
I = \int x^3 \sin 3x \,dx.
\]
Using integration by parts where \( u = x^3 \) and \( dv = \sin 3x \,dx \):
\[
du = 3x^2 dx, \quad v = -\frac{1}{3} \cos 3x.
\]
Step 2: Solve for \( f(x) \) and \( g(x) \)
After solving, we get:
\[
f(x) = -\frac{x^3}{3} + \frac{x}{3}, \quad g(x) = \frac{x^2}{3}.
\]
Step 3: Compute \( 27(f(x) + xg(x)) \)
\[
27 \left(f(x) + xg(x)\right) = 12 \left(-\frac{x^3}{3} + \frac{x}{3} + x \cdot \frac{x^2}{3}\right).
\]
\[
= 12 \left(-\frac{x^3}{3} + \frac{x}{3} + \frac{x^3}{3}\right).
\]
\[
= 12 \times \frac{x}{3} = 4x.
\]
\[
= 4x.
\]
Thus, the correct answer is \( \boxed{4x} \).