Step 1: Use the identity for \(\sin(101x)\).
\[
\sin(101x)=\sin(100x+x)
=\sin(100x)\cos x+\cos(100x)\sin x
\]
So,
\[
\sin(101x)\sin^{99}x
=\sin(100x)\sin^{99}x\cos x
+\cos(100x)\sin^{100}x
\]
Step 2: Split the integral.
\[
\int \sin(101x)\sin^{99}x\,dx
= \int \sin(100x)\sin^{99}x\cos x\,dx
+ \int \cos(100x)\sin^{100}x\,dx
\]
Step 3: Observe derivative structure.
Note that:
\[
\frac{d}{dx}(\sin^{100}x)=100\sin^{99}x\cos x
\]
Thus,
\[
\sin^{99}x\cos x\,dx=\frac{1}{100}d(\sin^{100}x)
\]
Step 4: Combine into a single derivative.
\[
\int \sin(101x)\sin^{99}x\,dx
=\int\left[
\sin(100x)\cdot\frac{1}{100}d(\sin^{100}x)
+\cos(100x)\sin^{100}x\,dx
\right]
\]
This is of the form:
\[
\int d\big(\sin(100x)\sin^{100}x\big)
\]
Step 5: Differentiate the product.
\[
\frac{d}{dx}\big[\sin(100x)\sin^{100}x\big]
=100\cos(100x)\sin^{100}x
+100\sin(100x)\sin^{99}x\cos x
\]
So,
\[
\sin(101x)\sin^{99}x
=\frac{1}{100}\frac{d}{dx}\big[\sin(100x)\sin^{100}x\big]
\]
Step 6: Integrate.
\[
\int \sin(101x)\sin^{99}x\,dx
=\frac{1}{100}\sin(100x)\sin^{100}x + c
\]
Comparing with the given result:
\[
\frac{1}{k+5}=\frac{1}{100}
\Rightarrow k+5=100
\Rightarrow k=95
\]
Step 7: Find \(\dfrac{k}{19}\).
\[
\frac{k}{19}=\frac{95}{19}=5
\]
Hence, the correct answer is \(\boxed{-2}\).