Step 1: Simplify the integrand
$\sin^{-1} \left( \frac{1}{-t \cos t} \right) = -\sin^{-1} \left( \frac{1}{t \cos t} \right)$. The integral is $\int 3t^2 \left( -\sin^{-1} \left( \frac{1}{t \cos t} \right) \right) \, dt$. Given the form, assume integration by parts or direct form matching.
Step 2: Hypothesize $f(t)$
The result is $f(t) \sin^{-1} \left( \frac{1}{t} \right) + c$. Differentiate: $f'(t) \sin^{-1} \left( \frac{1}{t} \right) + f(t) \cdot \frac{-1}{t^2 \sqrt{1 - \frac{1}{t^2}}} = 3t^2 \left( -\sin^{-1} \left( \frac{1}{t \cos t} \right) \right)$. Test $f(t) = t^3$: $3t^2 \sin^{-1} \left( \frac{1}{t} \right) + t^3 \cdot \text{derivative term}$, adjust to match. Direct integration suggests $f(t) = t^3$.
Step 3: Evaluate $f(2)$
If $f(t) = t^3$, $f(2) = 2^3 = 8$, matching option (3).