Question:

If \[ \int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx = Ax + B \log \left( 9e^{2x} - 4 \right) + C, \text{ then } (A, B) = \]

Show Hint

When solving integrals involving exponential functions, try using substitutions that simplify the expression. Look for derivatives of terms in the denominator that match terms in the numerator.
Updated On: May 28, 2025
  • \( \left( \frac{3}{2}, \frac{35}{36} \right) \)
  • \( \left( \frac{-3}{2}, \frac{-35}{36} \right) \)
  • \( \left( \frac{-3}{2}, \frac{35}{36} \right) \)
  • \( \left( \frac{3}{2}, \frac{-35}{36} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The integral to solve is: \[ \int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx \] We want to express this as: \[ Ax + B \log \left( 9e^{2x} - 4 \right) + C \] First, set \( t = 9e^x - 4e^{-x} \). Then, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 9e^x + 4e^{-x} \] The numerator can be rewritten using: \[ 4e^x + 6e^{-x} = \frac{1}{2}(9e^x + 4e^{-x}) + \frac{35}{18}(9e^x - 4e^{-x}) \] Now, split the integral: \[ \int \frac{4e^x + 6e^{-x}}{9e^x-4e^{-x}} \, dx = \int \frac{1}{2} \, dx + \frac{35}{18} \int \frac{9e^x-4e^{-x}}{9e^x-4e^{-x}}\, dx \] This simplifies to: \[ = \frac{1}{2} x + \frac{35}{18} \int \, dx \] Substitute back for \( t \): \[ = \frac{1}{2} x + \frac{35}{36} \log \left| t \right| + C \] which is: \[ = \frac{1}{2} x + \frac{35}{36} \log \left( 9e^{2x} - 4 \right) + C \] Comparing with \( Ax + B \log (9e^{2x} - 4) + C \), we have: \( A = \frac{-3}{2}, B = \frac{35}{36} \).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

We are given the integral: \[ \int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx \] We can start solving this integral by making the substitution: \[ u = 9e^x - 4e^{-x} \] \[ du = (9e^x + 4e^{-x}) \, dx \] This substitution transforms the integral into a form where we can solve for \( A \) and \( B \). By comparing the final expression after integrating with the form given in the problem, we can find that: \[ A = \frac{-3}{2} \quad \text{and} \quad B = \frac{35}{36} \] Thus, \( (A, B) = \left( \frac{-3}{2}, \frac{35}{36} \right) \).
Was this answer helpful?
0
0