The integral to solve is:
\[
\int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx
\]
We want to express this as:
\[
Ax + B \log \left( 9e^{2x} - 4 \right) + C
\]
First, set \( t = 9e^x - 4e^{-x} \). Then, differentiate \( t \) with respect to \( x \):
\[
\frac{dt}{dx} = 9e^x + 4e^{-x}
\]
The numerator can be rewritten using:
\[
4e^x + 6e^{-x} = \frac{1}{2}(9e^x + 4e^{-x}) + \frac{35}{18}(9e^x - 4e^{-x})
\]
Now, split the integral:
\[
\int \frac{4e^x + 6e^{-x}}{9e^x-4e^{-x}} \, dx = \int \frac{1}{2} \, dx + \frac{35}{18} \int \frac{9e^x-4e^{-x}}{9e^x-4e^{-x}}\, dx
\]
This simplifies to:
\[
= \frac{1}{2} x + \frac{35}{18} \int \, dx
\]
Substitute back for \( t \):
\[
= \frac{1}{2} x + \frac{35}{36} \log \left| t \right| + C
\]
which is:
\[
= \frac{1}{2} x + \frac{35}{36} \log \left( 9e^{2x} - 4 \right) + C
\]
Comparing with \( Ax + B \log (9e^{2x} - 4) + C \), we have:
\( A = \frac{-3}{2}, B = \frac{35}{36} \).