Use the standard integral: \[ \int \frac{1}{1 + k^2 x^2} \, dx = \frac{1}{k} \tan^{-1}(kx) \] Substitute \( k = 2 \) into the formula: \[ \int_0^a \frac{1}{1 + 4x^2} \, dx = \frac{1}{2} \tan^{-1}(2a) \] Given \( \frac{1}{2} \tan^{-1}(2a) = \frac{\pi}{8} \), solve for \( a \): \[ \tan^{-1}(2a) = \frac{\pi}{4} \] Thus, \( 2a = 1 \), so \( a = \frac{1}{2} \).