If \( \int_0^{2024\pi} \frac{2023^{\sin^2 x}}{2023^{\sin^2 x} + 2023^{\cos^2 x}} dx = k \), then \( \left( \frac{2k}{\pi} + 1 \right) = \)
Show Hint
Use the property \( \int_0^a f(x) dx = \int_0^a f(a - x) dx \) to simplify the integral. Also, use the periodicity of the trigonometric functions to reduce the limits of integration. The identity \( \sin^2 x + \cos^2 x = 1 \) is helpful.