To evaluate the integral \(\int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} \, dx\), we proceed as follows:
We apply a conjugate multiplication trick to simplify the integrand. Consider multiplying the numerator and denominator by the conjugate of the denominator:
\(\int_{0}^{1} \frac{\sqrt{3+x} - \sqrt{1+x}}{\left(\sqrt{3+x} + \sqrt{1+x}\right)\left(\sqrt{3+x} - \sqrt{1+x}\right)} \, dx\)
This simplifies using the identity \(a^2 - b^2 = (a-b)(a+b)\), giving:
\(\int_{0}^{1} \frac{\sqrt{3+x} - \sqrt{1+x}}{(3+x) - (1+x)} \, dx = \int_{0}^{1} \frac{\sqrt{3+x} - \sqrt{1+x}}{2} \, dx\)
Split this into two separate integrals:
\(\frac{1}{2}\left(\int_{0}^{1} \sqrt{3+x} \, dx - \int_{0}^{1} \sqrt{1+x} \, dx\right)\)
To solve each part, use the substitution \(u = x + c\) where necessary and integrate:
Now, compute the values:
\(\frac{2}{3}[4^{3/2} - 3^{3/2}]\) gives \(\frac{2}{3}[8 - 3\sqrt{3}]\), a\)
\(\frac{2}{3}[2^{3/2} - 1] = \frac{2}{3}[2\sqrt{2} - 1]\)
Subtract the two results:
\(\frac{1}{2}\left(\frac{2}{3}(8 - 3\sqrt{3}) - \frac{2}{3}(2\sqrt{2} - 1)\right)\)
Simplifying:
\(= \frac{1}{2}\left(\frac{16}{3} - \frac{6\sqrt{3}}{3} - \frac{4\sqrt{2}}{3} + \frac{2}{3}\right)\)
\(= \frac{1}{2} \cdot \frac{18}{3} - \frac{6\sqrt{3} + 4\sqrt{2}}{3}\)\)
The answer is of the form \(a + b\sqrt{2}+ c\sqrt{3}\)
Here, \(a = 3\), \(b = -\frac{2}{3}\), and \(c = -1\)
Finally, compute \(2a + 3b - 4c = 2(3) + 3(-\frac{2}{3}) - 4(-1)\)
\(= 6 - 2 + 4 = 8\)
Therefore, the correct value is 8.
Given:
\(\int_0^1 \frac{1}{\sqrt[3]{x} + \sqrt[3]{x} + \sqrt[3]{1 + x}} \, dx\)
Step 1: Rationalizing the Denominator
Rationalize the denominator:
\(\int \frac{\sqrt[3]{x + \sqrt{x}} - \sqrt[3]{x - \sqrt{x}}}{\left(\sqrt[3]{x + \sqrt{x}} + \sqrt[3]{x - \sqrt{x}}\right)} \, dx = \int \frac{\sqrt[3]{x + \sqrt{x}}}{2} \, dx\)
Step 2: Separating the Integral
Separate the integral:
\(\frac{1}{2} \left( \int \sqrt[3]{1 + \sqrt{x}} \, dx - \int \sqrt[3]{1 - \sqrt{x}} \, dx \right)\)
Step 3: Evaluating the Integrals
1. For \(\int \sqrt[3]{1 + \sqrt{x}} \, dx\):
\(\int \sqrt[3]{1 + \sqrt{x}} \, dx = \frac{3}{2} \cdot \frac{3}{4} \cdot 2 + \frac{2}{5} \Rightarrow \frac{3}{2} \left( 2 + \sqrt[3]{3} - 2^{3/2} \right) = \frac{3}{2} (3 - 3\sqrt{3})\)
2. For \(\int \sqrt[3]{1 - \sqrt{x}} \, dx\):
\(\int \sqrt[3]{1 - \sqrt{x}} \, dx = \frac{3}{2} (3 - \sqrt{3}) = \frac{3}{2} (2\sqrt{5} - 1)\)
Step 4: Combining the Results
Combine the results:
\(\frac{3}{2} (3 + \sqrt{3}) - \frac{3}{2} (3\sqrt{3} - 1) = a + b \sqrt{2 + \sqrt{3}}\)
From this, we find:
\(a = 3, \quad b = -\frac{2}{3}, \quad c = -1\)
Calculate:
\(2a + 3b - c = 2\frac{4}{3} + 3\frac{-4}{3} - 4(-1)=8\)
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:

Given below are two statements I and II.
Statement I: Dumas method is used for estimation of "Nitrogen" in an organic compound.
Statement II: Dumas method involves the formation of ammonium sulfate by heating the organic compound with concentrated H\(_2\)SO\(_4\). In the light of the above statements, choose the correct answer from the options given below:
Considering Bohr’s atomic model for hydrogen atom :
(A) the energy of H atom in ground state is same as energy of He+ ion in its first excited state.
(B) the energy of H atom in ground state is same as that for Li++ ion in its second excited state.
(C) the energy of H atom in its ground state is same as that of He+ ion for its ground state.
(D) the energy of He+ ion in its first excited state is same as that for Li++ ion in its ground state.