Given:
\(\int_0^1 \frac{1}{\sqrt[3]{x} + \sqrt[3]{x} + \sqrt[3]{1 + x}} \, dx\)
Step 1: Rationalizing the Denominator
Rationalize the denominator:
\(\int \frac{\sqrt[3]{x + \sqrt{x}} - \sqrt[3]{x - \sqrt{x}}}{\left(\sqrt[3]{x + \sqrt{x}} + \sqrt[3]{x - \sqrt{x}}\right)} \, dx = \int \frac{\sqrt[3]{x + \sqrt{x}}}{2} \, dx\)
Step 2: Separating the Integral
Separate the integral:
\(\frac{1}{2} \left( \int \sqrt[3]{1 + \sqrt{x}} \, dx - \int \sqrt[3]{1 - \sqrt{x}} \, dx \right)\)
Step 3: Evaluating the Integrals
1. For \(\int \sqrt[3]{1 + \sqrt{x}} \, dx\):
\(\int \sqrt[3]{1 + \sqrt{x}} \, dx = \frac{3}{2} \cdot \frac{3}{4} \cdot 2 + \frac{2}{5} \Rightarrow \frac{3}{2} \left( 2 + \sqrt[3]{3} - 2^{3/2} \right) = \frac{3}{2} (3 - 3\sqrt{3})\)
2. For \(\int \sqrt[3]{1 - \sqrt{x}} \, dx\):
\(\int \sqrt[3]{1 - \sqrt{x}} \, dx = \frac{3}{2} (3 - \sqrt{3}) = \frac{3}{2} (2\sqrt{5} - 1)\)
Step 4: Combining the Results
Combine the results:
\(\frac{3}{2} (3 + \sqrt{3}) - \frac{3}{2} (3\sqrt{3} - 1) = a + b \sqrt{2 + \sqrt{3}}\)
From this, we find:
\(a = 3, \quad b = -\frac{2}{3}, \quad c = -1\)
Calculate:
\(2a + 3b - c = 2\frac{4}{3} + 3\frac{-4}{3} - 4(-1)=8\)
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: