$(1+x)^m(1-x)^n= \bigg[1+mx+\frac{m(m-1)}{2}x^2+...\bigg]$
$\hspace30mm \, \bigg[1-nx+\frac{n(n-1)}{2}x^2+...\bigg]$
=1+(m-n)x+$\bigg[ \frac{m(m-1)}{2}+\frac{n(n-1)}{2}-mn\bigg] x^2+...$
term containing power of x$\ge $ 3.
Now, m -n = 3 $\hspace20mm $....(i)
and $ \, \, \, \frac{1}{2}m(m-1)x+\frac{1}{2}n(n-1)-mn=-6$
$\Rightarrow \, \, \, \, \, \, m(m-1)+n(n-1)-2mn=-12 $
$\Rightarrow \, \, \, \, \, \, m^2-m+n^2-n-2mn=-12$
$\Rightarrow \, \, \, \, \, \, (m-n)^2-(m+n)=-12 $
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, m+n=9+12=21 \, \, \, \, \, \, .....(ii)$
On solving Eqs. (i) and (ii), we get m = 12