Step 1: Understanding displacement current.
Displacement current is given by:
\[
J_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\]
Taking the time derivative of the electric field \( \vec{E} = 20 \cos(\omega t - 50x) \hat{y} \), we get:
\[
\frac{\partial \vec{E}}{\partial t} = -20 \omega \sin(\omega t - 50x) \hat{y}
\]
Thus, the displacement current density is:
\[
J_d = -20 \omega \epsilon_0 \sin(\omega t - 50x) \hat{y}
\]
Step 2: Conclusion.
Thus, the correct expression for displacement current density is option (2).