Given:
- \( h \): Height of the cone
- \( c \): Curved surface area of the cone
- \( v \): Volume of the cone
We need to evaluate the expression \( 3\pi vh^3 \).
Let's analyze each option and find the correct one:
Options:
A) \( 9v^2 - c^2h^3 \)
B) \( c^2h^2 - 9v^2 \)
C) \( c^2h^2 - 9v^3 \)
D) \( c^2h^2 - 16v^2 \)
Solution:
1. Expression Analysis:
\( 3\pi vh^3 \) represents the given expression.
2. Evaluation of Options:
- Option A: \( 9v^2 - c^2h^3 \)
- This option does not match \( 3\pi vh^3 \).
- Option B: \( c^2h^2 - 9v^2 \)
- Here, \( c^2h^2 \) corresponds to the square of the curved surface area times the square of the height of the cone.
- \( 9v^2 \) represents 9 times the square of the volume of the cone.
- This option matches the form \( x - y \), where \( x = c^2h^2 \) and \( y = 9v^2 \).
- Option C: \( c^2h^2 - 9v^3 \)
- This option does not match \( 3\pi vh^3 \).
- Option D: \( c^2h^2 - 16v^2 \)
- This option also does not match \( 3\pi vh^3 \).
3. Conclusion:
After evaluating all options, the expression \( 3\pi vh^3 \) matches with Option B:
Option B) \( c^2h^2 - 9v^2 \)
Therefore, the correct answer is Option B). This option correctly represents \( 3\pi vh^3 \) in the given format \( x - y \), where \( x = c^2h^2 \) and \( y = 9v^2 \).