We are given that \(g(x)\) is the inverse of \(f(x)\), so by the inverse function rule:
\[
g'(x) = \frac{1}{f'(g(x))}
\]
Given \(f'(x) = \frac{1}{h(x)}\), we substitute \(g(x)\) in place of \(x\):
\[
f'(g(x)) = \frac{1}{h(g(x))}
\]
Therefore,
\[
g'(x) = \frac{1}{f'(g(x))} = \frac{1}{\frac{1}{h(g(x))}} = h(g(x))
\]