Given:
\[
y = \frac{1 + x^2 + x^4}{1 + x + x^2}
\]
We need to find:
\[
\frac{dy}{dx} = a x + b
\]
and then find \( (a, b) \).
Step 1: Let numerator \( u = 1 + x^2 + x^4 \) and denominator \( v = 1 + x + x^2 \).
Compute derivatives:
\[
u' = 2x + 4x^3
\]
\[
v' = 1 + 2x
\]
Step 2: Use the quotient rule:
\[
\frac{dy}{dx} = \frac{u' v - u v'}{v^2}
\]
Step 3: Calculate numerator of derivative:
\[
u' v = (2x + 4x^3)(1 + x + x^2)
\]
Multiply:
\[
= (2x)(1 + x + x^2) + (4x^3)(1 + x + x^2)
\]
\[
= 2x + 2x^2 + 2x^3 + 4x^3 + 4x^4 + 4x^5 = 2x + 2x^2 + 6x^3 + 4x^4 + 4x^5
\]
\[
u v' = (1 + x^2 + x^4)(1 + 2x)
\]
\[
= (1)(1 + 2x) + x^2 (1 + 2x) + x^4 (1 + 2x)
\]
\[
= 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5
\]
Step 4: Subtract:
\[
u' v - u v' = (2x + 2x^2 + 6x^3 + 4x^4 + 4x^5) - (1 + 2x + x^2 + 2x^3 + x^4 + 2x^5)
\]
\[
= 2x - 2x + 2x^2 - x^2 + 6x^3 - 2x^3 + 4x^4 - x^4 + 4x^5 - 2x^5 - 1
\]
\[
= 0 + x^2 + 4x^3 + 3x^4 + 2x^5 - 1
\]
or reordered:
\[
= -1 + x^2 + 4x^3 + 3x^4 + 2x^5
\]
Step 5: The denominator is:
\[
v^2 = (1 + x + x^2)^2 = 1 + 2x + 3x^2 + 2x^3 + x^4
\]
Step 6: Since the problem states:
\[
\frac{dy}{dx} = a x + b,
\]
the derivative must be a linear polynomial.
So the complicated fraction simplifies to \( a x + b \).
Step 7: To find \( a \) and \( b \), substitute convenient values of \( x \) into the derivative formula and equate.
Calculate \( \frac{dy}{dx} \) at \( x=0 \):
\[
\frac{dy}{dx} \bigg|_{x=0} = \frac{-1 + 0 + 0 + 0 + 0}{1} = -1
\]
This equals \( a \cdot 0 + b = b \), so
\[
b = -1
\]
Step 8: Calculate \( \frac{dy}{dx} \) at \( x=1 \):
Numerator:
\[
-1 + 1 + 4 + 3 + 2 = 9
\]
Denominator:
\[
1 + 2 + 3 + 2 + 1 = 9
\]
So:
\[
\frac{dy}{dx}\bigg|_{x=1} = \frac{9}{9} = 1
\]
This equals \( a \cdot 1 + b = a -1 \), so
\[
1 = a - 1 \implies a = 2
\]
Therefore,
\[
(a, b) = (2, -1)
\]