Step 1: Differentiating using quotient rule
Using the quotient rule:
\[
\frac{d}{dx} \left(\frac{f(x)}{g(x)}\right) = \frac{f'g - fg'}{g^2}.
\]
Let \( f(x) = 1 + x^2 + x^4 \), \( g(x) = 1 + x + x^2 \). Computing derivatives:
\[
f'(x) = 2x + 4x^3, \quad g'(x) = 1 + 2x.
\]
Applying the quotient rule and simplifying:
\[
\frac{(2x + 4x^3)(1 + x + x^2) - (1 + x^2 + x^4)(1 + 2x)}{(1 + x + x^2)^2}.
\]
Simplifying, we get:
\[
2x - 1.
\]
Thus, \( a = 2 \), \( b = -1 \).