We are given:
\[
\frac{\cos x}{\cos(x - 2y)} = \lambda
\]
Step 1: Express the equation in terms of trigonometric identities
Using the trigonometric identity for \( \cos(x - 2y) \), we can expand:
\[
\cos(x - 2y) = \cos x \cos 2y + \sin x \sin 2y
\]
Substitute this in the given equation:
\[
\frac{\cos x}{\cos x \cos 2y + \sin x \sin 2y} = \lambda
\]
Step 2: Simplify the equation
\[
\frac{1}{\cos 2y + \tan x \sin 2y} = \lambda
\]
Now, multiply both sides by \( \cos 2y + \tan x \sin 2y \):
\[
1 = \lambda(\cos 2y + \tan x \sin 2y)
\]
Now, we want to calculate \( \tan(x - y) \tan y \).
Step 3: Using the formula for \( \tan(x - y) \)
We can use the identity for \( \tan(x - y) \):
\[
\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}
\]
Thus,
\[
\tan(x - y) \tan y = \frac{(\tan x - \tan y) \cdot \tan y}{1 + \tan x \tan y}
\]
Step 4: Final Simplification
Simplifying this expression using the previously derived equation, we get the result:
\[
\tan(x - y) \tan y = \frac{1 - \lambda}{1 + \lambda}
\]
Thus, the correct answer is (B).