Let $ \mathbb{R} $ denote the set of all real numbers. Define the function $ f: \mathbb{R} \to \mathbb{R} $ by $$ f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \ne 0, \\ 2, & \text{if } x = 0. \end{cases} $$ Then which one of the following statements is TRUE?
Let a random variable \( X \) follow Poisson distribution such that \( P(X = 0) = 2P(X = 1) \). Then, P(X = 3) = ______
The probability distribution of a random variable \( X \) is given as follows. Then, \( P(X = 50) - \frac{P(X \leq 30)}{P(X \geq 20)} \) =