We know the signum function \( f(x) \) is:
\[
f(x) =
\begin{cases}
1, & x>0 \\
0, & x = 0 \\
-1, & x < 0
\end{cases}
\]
To get a constant function \( g(x) = 1 \) for all \( x \), option (4) correctly adjusts values of \( f(x) \) at different regions of \( x \) to ensure the result is always 1:
- When \( x < 0 \): \( f(x) + 2 = -1 + 2 = 1 \)
- When \( x = 0 \): \( 1 + f(0) = 1 + 0 = 1 \)
- When \( x>0 \): \( f(x) = 1 \)