{If \(f(x)\) is a quadratic function such that \(f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{1-x}\right)\), then \(\sqrt{f\left(\frac{2}{3}\right) + f\left(\frac{3}{2}\right)} =\)}
\(\frac{41}{20}\)
The given function satisfies the condition \(f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{1-x}\right)\). Given this property, to solve for \(\sqrt{f\left(\frac{2}{3}\right) + f\left(\frac{3}{2}\right)}\), we first determine the values of \(f\left(\frac{2}{3}\right)\) and \(f\left(\frac{3}{2}\right)\) by applying quadratic properties and symmetry. After computing these values and their sum, we find the square root of their sum to be \(\frac{13}{6}\).
Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is: