If f(x) = \(f(x)=\left\{\begin{matrix} mx^2+n, &\,\,\,\,x<0 \\ nx+m,&\,\,\,\, 0\leq x\leq1 \\ nx^3+m,&\,\,\,\, x>1 \end{matrix}\right.\). For what integers m and n does both \(\lim_{x\rightarrow 1}\)f(x) and \(\lim_{x\rightarrow 1}\) f(x) exist?
The given function is \(f(x)=\left\{\begin{matrix} mx^2+n, &\,\,\,\,x<0 \\ nx+m,&\,\,\,\, 0\leq x\leq1 \\ nx^3+m,&\,\,\,\, x>1 \end{matrix}\right.\) \(\lim_{x\rightarrow 0^-}\)f(x)=\(\lim_{x\rightarrow 0^-}\)(mx2+n) =m(0)2+n =n \(\lim_{x\rightarrow 0^+}\) f(x)= \(\lim_{x\rightarrow 0^+}\)(nx+m) = n(0)+m = m. Thus, \(\lim_{x\rightarrow 0}\)f(x) exists if m = n. \(\lim_{x\rightarrow 0^-}\) f(x)= \(\lim_{x\rightarrow 1^-}\)(nx+m) = n(1) +m =m+n \(\lim_{x\rightarrow 1^+}\) f(x)= \(\lim_{x\rightarrow 1^+}\)(nx3+m) = n(1) +m =m+n ∴ \(\lim_{x\rightarrow 1^-}\)f(x)= \(\lim_{x\rightarrow 1^+}\) f(x) = \(\lim_{x\rightarrow 1}\) f(x). Thus,\(\lim_{x\rightarrow 1}\)f(x) exists for any integral value of m and n.