>
Exams
>
Mathematics
>
Functions
>
if f x dfrac 4x 7 7x 4 then the value of f f f 2 i
Question:
If
\( f(x)=\dfrac{4x+7}{7x-4} \),
then the value of
\[ f\{f[f(2)]\} \]
is
Show Hint
In composite functions, always evaluate step by step from the innermost function.
MHT CET - 2020
MHT CET
Updated On:
Feb 2, 2026
\( \dfrac{3}{2} \)
\( \dfrac{2}{3} \)
\( \dfrac{35}{39} \)
\( \dfrac{39}{35} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Find \(f(2)\).
\[ f(2)=\frac{4(2)+7}{7(2)-4}=\frac{8+7}{14-4}=\frac{15}{10}=\frac{3}{2} \]
Step 2: Find \(f[f(2)] = f\!\left(\dfrac{3}{2}\right)\).
\[ f\!\left(\frac{3}{2}\right) =\frac{4\left(\frac{3}{2}\right)+7}{7\left(\frac{3}{2}\right)-4} =\frac{6+7}{\frac{21}{2}-4} =\frac{13}{\frac{13}{2}}=2 \]
Step 3: Find \(f\{f[f(2)]\
= f(2)\).}
\[ f(2)=\frac{3}{2} \]
Step 4: Final Answer.
\[ f\{f[f(2)]\}=\frac{3}{2} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Functions
If \( y = \operatorname{sgn}(\sin x) + \operatorname{sgn}(\cos x) + \operatorname{sgn}(\tan x) + \operatorname{sgn}(\cot x) \), where \(\operatorname{sgn}(p)\) denotes the signum function of \(p\), then the sum of elements in the range of \(y\) is:
JEE Main - 2026
Mathematics
Functions
View Solution
Statement 1 : The function \(f:\mathbb{R}\to\mathbb{R}\) defined by \[ f(x)=\frac{x}{1+|x|} \] is one–one.
Statement 2 : The function \(f:\mathbb{R}\to\mathbb{R}\) defined by \[ f(x)=\frac{x^2+4x-30}{x^2-8x+18} \] is many–one.
Which of the following is correct?
JEE Main - 2026
Mathematics
Functions
View Solution
If domain of \(f(x) = \sin^{-1}\left(\frac{5-x}{2x+3}\right) + \frac{1}{\log_{e}(10-x)}\) is \((-\infty, \alpha] \cup (\beta, \gamma) - \{\delta\}\) then value of \(6(\alpha + \beta + \gamma + \delta)\) is equal to :
JEE Main - 2026
Mathematics
Functions
View Solution
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Mathematics
Functions
View Solution
Let $ \mathbb{R} $ denote the set of all real numbers. For a real number $ x $, let $ \lfloor x \rfloor $ denote the greatest integer less than or equal to $ x $. Let $ n $ denote a natural number.
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
[(P)] The minimum value of $ n $ for which the function $$ f(x) = \left\lfloor \frac{10x^3 - 45x^2 + 60x + 35}{n} \right\rfloor $$ is continuous on the interval $ [1, 2] $, is
[(Q)] The minimum value of $ n $ for which $$ g(x) = (2n^2 - 13n - 15)(x^3 + 3x), $$ $ x \in \mathbb{R} $, is an increasing function on $ \mathbb{R} $, is
[(R)] The smallest natural number $ n $ which is greater than 5, such that $ x = 3 $ is a point of local minima of $$ h(x) = (x^2 - 9)^n (x^2 + 2x + 3), $$ is
[(S)] Number of $ x_0 \in \mathbb{R} $ such that $$ l(x) = \sum_{k=0}^{4} \left( \sin |x - k| + \cos \left| x - k + \frac{1}{2} \right| \right) $$ is
not
differentiable at $ x_0 $, is
List-II
[(1)] 8
[(2)] 9
[(3)] 5
[(4)] 6
[(5)] 10
Options:
JEE Advanced - 2025
Mathematics
Functions
View Solution
View More Questions
Questions Asked in MHT CET exam
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
The angle between the lines whose direction cosines satisfy the equations: \[ l + m + n = 0 \quad \text{and} \quad m^2 + n^2 - l^2 = 0 \] Find the angle between the two lines.
MHT CET - 2025
Direction Cosines and Direction Ratios of a Line
View Solution
View More Questions